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Abstract
We prove that Galilean invariant Schrödinger equations derived from
Lagrangian densities necessarily obey the Ehrenfest theorem for velocity-
independent potentials. The conclusion holds as well for Lagrangians
describing nonlinear self-interactions. An example of Doebner and Goldin
motivates the result.

PACS numbers: 03.65.−w, 71.15.Mb

1. Ehrenfest theorem breaking

Nonlinear Schrödinger equations such as the Gross-Pitaevskii equation [1] describe Bose–
Einstein condensates (BEC) of alkali gases. The equation is effective, derivable from a field
theory by taking condensate expectation values. Another widespread application of nonlinear
Schrödinger equations is in density functional phenomenological models. In these theories,
the Schrödinger equation reads

i
∂ψ

∂t
= − 1

2m
�∇2

ψ + [O(|ψ |2) + U(�r)]ψ (1)

where O(|ψ |2) is a nonlinear and sometimes nonlocal [2] functional of the density ρ = |ψ |2.
The Ehrenfest equation for the average velocity, including the nonlinear term of equation (1),
reads

m
d

dt
〈�v(t)〉 = −

∫
d3x ρ(�r) �∇[U(�r) + O(ρ)]. (2)

Since ∫
d3x ρ �∇[O(ρ)] = 0 (3)
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we arrive at the usual Ehrenfest equation for the velocity. If the external interaction is coupled
nonlinearly to the density, through a potential U(ρ, �r), then the Ehrenfest theorem is still
satisfied, but this time with a nonlinear force1

�F(t) = −
∫

d3x |ψ(�r)|2 �∇U(ρ, �r). (4)

The vanishing of equation (3) is due to the dependence of O(ρ) solely on ρ and not on
the phase of ψ . Consider now the Schrödinger equation proposed by Doebner and Goldin [4],
without the diffusive term2

i
∂ψ

∂t
= −

�∇2
ψ

2m
+ λ �∇ ·

( �j
|ψ |2

)
ψ + U(�r)ψ (5)

where λ is a coupling constant and �j = i
2m

( �∇ψ∗ψ − �∇ψψ∗). Galilean transformations are
given by [5]

�r → �r − δ�vt
∂

∂t
→ ∂

∂t
− δ�v · �∇ ψ → eiφψ φ = 1

2
m(δ�v)2 − mδ�v · �r (6)

with δ�v a constant velocity parameter. Under these substitutions, the free Schrödinger equation
is invariant, while

�j
|ψ |2 →

�j
|ψ |2 + δ�v. (7)

Equation (5) is then Galilean invariant. However, the Ehrenfest theorem is not satisfied:

m
d

dt
〈�v(t)〉 = �F(t) + λ

∫
d3x �∇|ψ |2 · �∇

( �j
|ψ |2

)
. (8)

Identity (3) is of no use now, since the last term in equation (8) depends both on derivatives of
the modulus and derivatives of the phase of the wavefunction. We shall show that failure to obey
the Ehrenfest theorem for the case of space-dependent external potentials, including nonlinear
self-interactions is due either to the absence of a Lagrangian from which the equations are
derivable, or to the Galilean noninvariance of the equation when a Lagrangian is present.

2. Ehrenfest theorem as a consequence of Galilean invariance

Consider a generic Schrödinger Lagrangian density

L(ψ,ψt , ψi) = L(St , Si, R,Rt , Ri) ψ = R eiS (9)

where suffixes denote partial derivatives with respect to time t and with respect to the spatial
coordinate xi . Space translations are generated by the transformations �r → �r + �ε, with �ε a
constant parameter. Invariance of the action engenders the law of conservation for the linear
momentum density

0 = ∂pj

∂t
+

∂Tij

∂xi

�p = − ∂L
∂St

�∇S − ∂L
∂Rt

�∇R Tij = δijL − ∂L
∂Si

Sj − ∂L
∂Ri

Rj . (10)

As the Lagrangian (9) is independent of S, flux is conserved

0 = ∂J0

∂t
+ �∇ · �J J0 = − ∂L

∂St

�J = − ∂L
∂ �∇S

. (11)

1 This is analogous to the results found in soliton models [3].
2 A sizeable body of literature on related topics may be traced by citations to [4].
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In equations (10) and (11), the only conditions imposed are that the Lagrangian is a real
scalar dependent on the complex wavefunction and, independent of spatial coordinates except
through the wavefunction and its derivatives. We also assume that there are no derivatives of
higher order, although this is not an essential ingredient.

The connection with the Ehrenfest theorem now follows from Galilean invariance of the
Schrödinger equation, or covariance of the action for finite Galilean boosts. Covariance, not
invariance, is appropriate, as a boost modifies the kinetic energy and consequently changes the
action. Applying an infinitesimal Galilean transformation as specified in equations (6), to the
Lagrangian L, i.e. dropping the term quadratic in the velocity, the variation of the Lagrangian
becomes

δL = − ∂L
∂St

δ�v · �∇S − ∂L
∂Rt

δ�v · �∇R +
∂L

∂ �∇S
· mδ�v

(12)
= δ�v · �p − mδ�v · �J

where we have used the definitions of �p and �J in equations (10) and (11). For the action
to be covariant, which is equivalent to being invariant for infinitesimal Galilean boosts,
equation (12) implies

�p = m�J + �∇f (�r, t). (13)

Galilean invariance thus requires the probability flux to differ from the conserved linear
momentum density by at most a total divergence. We can also proceed backwards from
equation (13) and reconstruct the Galilean invariance.

We are now ready to show the validity of the Ehrenfest theorem for a generic Lagrangian
as in equation (9), to which we add a scalar potential term LU = −U(�r)|ψ |2.

The Lagrangian is no longer invariant under translations, but the action still is.
Equation (10) is now modified to

0 = ∂pj

∂t
+

∂Tij

∂xi

+
∂U(�r)
∂xj

|ψ |2. (14)

Integrating over space for asymptotically vanishing wavefunctions, we find
d

dt

∫
d3x pj (�r, t) = −

∫
d3x

∂U(�r)
∂xj

|ψ |2. (15)

This is the second law of Newton for the ‘field’ momentum �p, but it is not yet related to the
Ehrenfest theorem.

Using equation (11), we have as usual
d

dt
〈�r〉 =

∫
d3x �r∂J0

∂t

= −
∫

d3x �r �∇ · �J

=
∫

d3x �J. (16)

Then from equations (13) and (15)

m
d2

dt2
〈�r〉 = m

d

dt

∫
d3x �J

= d

dt

∫
d3x �p

= −
∫

d3x �∇[U(�r)]|ψ |2

= 〈�F〉. (17)
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3. Conclusion

We have shown that the requirement of Galilean invariance imposed on a real scalar local
Lagrangian describing a Schrödinger field, including spatially dependent interactions and
nonlinear self-interactions, implies the Ehrenfest theorem. The conditions are sufficient, but
we have not shown they are necessary. Equivalently, if a Schrödinger equation with such
interactions violates the Ehrenfest theorem then either it is not derivable from a Lagrangian,
or it is not Galilean invariant. The key step in the proof is the connection between the flux
vector and the field momentum of equation (13).
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